ABG Interpretation
ABG Interpretation
 

A-a Gradient

 
 
Bookmark

Overview

  • The alveolar-arterial (A-a) gradient is a comparison of the partial pressure of O₂ in the alveoli and in arterial blood.
      • Normal Range

      • 5 - 25
    • Calculating the A-a Gradient

    • The A-a gradient is calculated as the alveolar partial pressure of oxygen (PAO₂) minus the arterial partial pressure of oxygen (PaO₂):
  • A-a gradient = PAO₂ - PaO₂
  • The alveolar value is calculated, based on the patient's inspired FiO₂ and the PCO₂ from their blood gas result, while the arterial value is the PaO₂ from the patient's blood gas result.
    • Calculating the Alveolar Pressure of Oxygen

    • To calculate the A-a gradient, first calculate the alveolar partial pressure of oxygen (PAO₂), using the alveolar gas equation:
  • PAO₂ = ( FiO₂ × ( Patmos - PH₂O ) ) -
    PaCO₂R
    • FiO₂: the fraction of inspired oxygen that the patient is inspiring - 0.21 on room air
    • Patmos: atmospheric pressure - 760mmHg at sea level
    • PH₂O: the water vapour pressure - 47mmHg at 37°
    • PCO₂:  the partial pressure of carbon dioxide, from the patient's ABG result
    • R: the respiratory quotient - 0.8
  • This can be simplified further, assuming that the patient is normothermic and at sea level:
  • PAO₂ = ( FiO₂ × ( 760 - 47 ) ) -
    PaCO₂0.8
  • To produce the following formula:
  • PAO₂ = ( FiO₂ × 713 ) -
    PaCO₂0.8

Elevated A-a Gradient

  • An elevated A-a gradient indicates that the partial pressure of O₂ is higher in the alveoli than in arterial blood, indicating a V/Q mismatch.
    • Causes of Elevated A-a Gradient

    • Dead space ventilation - pneumonia, asthma, COPD, pulmonary embolismVentilation without perfusion
    • Left to right shunt - pulmonary oedema, ARDS, pneumoniaPerfusion without ventilation
    • Alveolar hypoventilation - pulmonary fibrosis, interstitial lung disease
 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Want more info like this?
  • Your electronic clinical medicine handbook
  • Guides to help pass your exams
  • Tools every medical student needs
  • Quick diagrams to have the answers, fast
  • Quizzes to test your knowledge
Explore
   
 
 

Read More...

 Andersen L, Mackenhauer J, Roberts J, Berg K, Cocchi M, Donnino M. Etiology and Therapeutic Approach to Elevated Lactate Levels. Mayo Clin Proc. 2013;88:1127-1140.
Beasley R, McNaughton A, Robinson G. New look at the oxyhaemoglobin dissociation curve. The Lancet. 2006;367:1124-1126.
 Bellomo R. Bench-to-bedside review: lactate and the kidney. Critical Care 2002;6(4):1. Berend K, de Vries A, Gans R. Physiological Approach to Assessment of Acid-Base Disturbances. N Engl J Med. 2014;371:1434-1445. Brenner BE. Alveolar-arterial oxygen gradients. Ann Emerg Med. 1980;9:648-648. Brindley PG, Butler MS, Cembrowski G, Brindley DN. Falsely elevated point-of-care lactate measurement after ingestion of ethylene glycol. Canadian Medical Association Journal 2007;176(8):1097-9. Donnino MW, Carney E, Cocchi MN, Barbash I, et al. Thiamine deficiency in critically ill patients with sepsis. Journal of critical care 2010;25(4):576-81. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Annals of surgery 1996;224(1):97. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014; 371: 2309-2319. Levraut J, Ciebiera JP, Chave S, Rabary O, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J RespirCrit Care Med. 1998; 157(4 Pt 1):1021-6. Levy B, Gibot S, Franck P, Cravoisy A, et al. Relation between muscle Na+ K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. The Lancet 2005;365(9462):871-5. Marino PL. Marino's the ICU Book. Fourthition. ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014. McCarter FD, Nierman SR, James JH, Wang L, et al. Role of skeletal muscle Na+–K+ ATPase activity in increased lactate production in sub–acute sepsis. Life sciences 2002;70(16):1875-88. Moreau R, Hadengue A, Soupison T, Kirstetter P, et al. Septic shock in patients with cirrhosis: hemodynamic and metabolic characteristics and intensive care unit outcome. Critical care medicine 1992;20(6):746. Perriello G, Jorde R, Nurjhan N, Stumvoll M, et al. Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: role of skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism 1995;269(3):E443-50. Phypers B, Pierce JT. Lactate physiology in health and disease. Continuing education in Anaesthesia, critical care & pain. 2006 Jun 1;6(3):128-32. Stacpoole PW. Lactic acidosis. Endocrinol Metab Clin North Am 1993 Jun; 22(2) 221-45.
Tunney P, Chinnan NK. Serum Lactate in Intensive Care: Practical Points and Pitfalls. inflammation. 2016;6:7.
 Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 1996;6(2):89-94. Venkatesh B, Morgan T, Garrett P. Measuring the lactate gap. The Lancet 2001;358(9295):1806.
Feedback